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ABSTRACT 

Five domain constants are studied in our paper, all related to the hyper- 

bolic geometry in hyperbolic plane regions which are uniformly perfect (in 
Pommerenke's terminology). Relations among these domain constants are 

obtained, from which bounds are derived for the variance ratio of each 

constant under conformal mappings of the regions, and we also show that 

each constant may be used to characterize uniformly perfect regions. 

1. In t roduc t ion  

We start by recalling some facts about the hyperbolic metric. The hyperbolic 

metric on the unit disk D is given by 

Idzl 
AD(z)ldzl = 1 - J z l  2 
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It is normalized to have Gaussian curvature -4.  For a hyperbolic region ~ in the 

complex plane C, that is, C \ ~ contains at least two points, let An(z)ldz I denote 

the hyperbolic metric on fl with curvature -4 .  It is obtained from 

1 
(1) An(f(w))l f ' (w)[ ---- '~D(W) = 1 --  W W '  

where f : D --* E/ is any holomorphic universal covering projection. Let df~ 

denote the hyperbolic distance function on ~ determined from the hyperbolic 

metric. Note that 

alp(a, b) -- arta~h a - b 

The pseudohyperbolic distance is given by tanh dn. Also, the hyperbolic disk 

with center a and hyperbolic radius r is Dn(a,r)  = (z E ~ :  da(a,z) < r}. 

The quasi-hyperbolic metric on a region ~/~  C is defined by ]dzi/6n(z), where 

6a(z) = dist(z, 0~) is the euclidean distance from z to 0~. By Schwarz' Lemma 

the ratio Af~(z)6a(z) of the hyperbolic and quasi-hyperbolic metrics on a hyper- 

bolic region ~ is always bounded above by 1 [5, p. 45]. Thus, as long as the 

domain constant 

c(~) = inf{An(z)6n(z) : z e ~2} 

is positive, the hyperbolic and quasi-hyperbolic metrics are comparable. A region 

f / for  which c(~) > 0 is called uniformly perfect  following Pommerenke [11]. 

The punctured disk D* = D \ {0}, or more generally, any hyperbolic region 

containing an isolated finite boundary point, is not uniformly perfect. Osgood 

[9, Cot. 1] showed that if ~ and A are conformally equivalent hyperbolic regions, 

then 
1 c(u) 

for some positive constant B < 6. Therefore, the domain constant c(~) is quasi- 

invariant under conformal mappings and so ~ is uniformly perfect if and only if 

is. Minda [7] improved this estimate on B to B <_ 4 coth (~r /2~)  = 5.5583-... 

In this paper we improve this bound to 

One ingredient in this proof is the fact that c(~) __< ½ for any hyperbolic region ~/ 

with equality if and only if ~ is convex. We conjecture that B = 2. For a simply 
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connected domain f~, c(f/) > 1 with equality if f~ is a slit plane [5, p. 45]. Thus, 

for the class of simply connected hyperbolic domains we have ½ < c(f/)/c(A) < 2. 

We also study four other domain constants defined for hyperbolic domains; 

three of these are quasi-invariant under conformal mappings while the fourth is 

a conformal invariant. We show that all four of these constants can be used to 

characterize uniformly perfect regions. For these three quasi-invariant domain 

constants we show that the variance ratio under a conformal mapping is the 

same for simply connected domains as for general hyperbolic domains. This 

lends support to our conjecture that B = 2. 

2. D o m a i n  Constants  

In this section we define four domain constants for any hyperbolic region l~; one of 

these constants is a conformal invariant while the other three are quasi-invariant. 

All of these constants are defined in terms of the hyperbolic geometry of the 

region and also have simple expressions in terms of any holomorphic covering 

projection of D onto fL 

For any hyperbolic domain f~ set 

x I v log ,~. (z)l 
,7(~) = 5 sup 

It is straightforward to verify that r/(D) = 1 and r/(D') = oo. 

The quantity T/(f~) can be expressed conveniently in terms of any holomorphic 

universal covering projection f : D --~ f~. For such a covering projection the 

identity (1) holds. By taking the logarithm of (1) and differentiating, we obtain 

Olog Aft(z) f'(w) 
Oz f ' ( ~ ' )  + 2f'(w----~ = ~ -- w------~ 

for z = f (w) .  Then by making use of 

20 logAa(z )  
I vlog~(z)l = ~ , 

we obtain 
] V log,~n(z)J 

i ~ ( ~ )  = (1 -I~l~) f''(~)f,(~) 2~ I. 
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Hence, 
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,7(a) = ~ ( 1 -  w j Tr(- ~ 2~ . 

This shows that the right-hand side is independent of the choice of the covering 

projection f of D onto ~. The preceding identity also reveals than ~/(~) = a ,  

where a is the order [10] of the linearly invariant family 

= [ (1 - lal2)e~°f'(e~°a) : a E D = d  0 E R . 

Recall that the collection of all holomorphic universal covering projections of D 

onto ~ is given by 

= {f(ei°(z + a)/( l+az)):  a E D and 0 E R}. 

In fact, 

~- = {f  o T : T is a conformal automorphism of D}. 

Note that ~ consists of the coverings in Jr which have been normalized to vanish 

at the origin and have derivative one at the origin. If .f : D ~ fl is a covering, 

T(z) = (z + a)/(1 + az) and g = y o T, then 

9"(0) _ (1 2"f"(a) 

Consequently, for any covering f : D ---* 

fig"(0) } 
r/(f~) = sup/12g-- ~ : 9 = f o T andTis  any conformal automorphism of D . 

Note that 7/(f~) = 1 for any convex region [10] and r/(~) = 2 for a slit plane. 

The quantity r/(f~) also has geometric significance. If 7 : z = z(t), a < t < b, 

is a O2-path in ~ with nonvanishing tangent vector z'(t), then the hyperbolic 

curvature of 7 at the point z = z(t) is given by 

{ °]°~;~"(') z'(t) } ,~,(z,~) a, 
~crt(z'7) = )~r~(z'----~ + 2 Im 

where 

'~'(~'~)=Im I Iz,(t)13 J 
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is the euclidean curvature of 7 at z = z(t). One geometric property of r/(f~) is 

that ~¢a(z,7 ) > 2r/(f/)implies K,(z,7 ) > 0. 
The next domain constant involves the Schwarzian derivative of a conformal 

metric. Suppose p(z)[dz I is a conformal metric on a region f/. The Schwarzian 

derivative of this conformal metric is defined by 

s~(=)--2[ °2l°gp(=) [°l°-ge(=)~ 2l -2a(=) °~(p(~)-') 
~ \ 0~ ) 1 =  O z 2  

Here is one justification for calling this expression the Schwarzian derivative of a 

conformal metric. If h is holomorphic on f~ and h'(z) # 0 for z E I2, then the pull- 

back of the euclidean metric via h is the conformal metric Ih'(z)l Idzl = p(z)ldz I. 
Straightforward calculation shows that 

h"(z) 3/' h"(z) ~ 
Sp(z) Sh(z), h'(~) 2\h'(z)] 

the usual Schwarzian derivative Sh of the function h. 

The Schwarzain derivative of a conformal metric has significance relative to 

the rate of change of geodesic curvature. If 7 : z = z(t), a < t < b, is a C2-path 

in f~ with nonvanishing tangent vector z~(t), then the geodesic curvature of 3' at 

the point z = z(t) relative to the conformal metric p(z)[dz[ is given by 

~,(z,7) Im~ (Olog.p(z)lOz) z'(t) } 
" " ( ~ ' 7 ) -  p ( = ~  +2 [ p(~) Iz'(OI " 

By differentiating this formula with respect to t, we obtain 

d dR,~(z,7) + Im{Sp(z(t))z'(t)2}, p(=)l:' (t)l~,%(=, 7) = 

where 

d n e ( z , 7 ) _  1 { z ' " ( t ) 3  (z"(,) '~ 2 } 1 
~ I m  ~ ( ~  2 ~, z'(t) ] = Iz'(t)( Im{S=(t)} 

is the rate of change of euclidean curvature. 

The third domain constant is 

1 { ISx.(~)l 
~(a) = ~sup ~.(~)~ : z E ~ } .  
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If f : D --* fl is a covering projection, then from (1) we obtain 

IS/(w)l IS .(f(w))l 
 D(w) = = • 

Hence, 

Z(n)  = ½ s u e { 0  - [wlVIs (w)l : w • D}. 

In particular, ~(~) = 0 if and only if fl is a disk or half-plane since S t = 0 if 

and only if f is a MSbius transformation. Also, if fl(~) < 1, then f~ is simply 

connected by Nehari's univalence criterion [8]. Observe that fl(fl) = 1 for a strip 

while fl(fl) = 3 for a slit plane. 

Next, we consider a conformally invariant domain constant. For a • f~ let 

r(a, f~) = sup{r :  Dn(a, r) is simply connected} 

and 

r(£/) = inf{r(a, ~ ) :  a E ~}. 

The quantity r(~2) is called the h y p e r b o l i c  r ad ius  o f  in jec t iv i ty  for fZ, while 

R(~)  = tanh r(fZ) is the p s e u d o - h y p e r b o l i c  r ad ius  of  in jec t iv i ty .  Because 

the hyperbolic metric is conformally invariant, it is clear that the hyperbolic 

radius of injectivity is also a conformal invariant. 

We express r(~)  in terms of any holomorphic covering projection f : D --* ~2. 

Set 

p(w, f )  = sup{p : f is injective in DD(w, p)} 

and 

p(f) = inf{p(w, f )  : w E D}. 

If p(f) > 0, then f is uniformly locally univalent in the hyperbolic sense; that 

is, f is univalent in every hyperbolic disk with hyperbolic radius p(f). Now, it is 

always true that f(DD(w, p)) = Dn(f(w), p) for any hyperbolic disk, but f need 

not be injective on DD(w,p). If f is injective on DD(w,p), then Dn(f(w),p) 
is simply connected. This yields p(w, f) < r(f(w), fl). On the other hand, if 

Da(f(w), p) is simply connected, then f[DD(w, p) must be injective. This can be 

seen as follows. Suppose wl and w2 belong to DD(w, p) and f(wl) = f(w2). The 

hyperbolic geodesic 7 connecting wl and w2 lies in DD(w,p) since this disk is 

hyperbolically convex. Then/~ = f o  7 is a closed path in the simply connected set 
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Da(f(w), p), so it is homotopically trivial in Da(f(w), p) and consequently ho- 

motopically trivial in ~. This implies that any lift of ~ to D via f is closed. Hence, 

7 itself is closed and so wl = w~. Thus, f[DD(w, p) is injective when Dn(f(w), p) 
is simply connected, so that  r(f(w), fZ) < p(w, f). Thus, r ( / (w) ,  ~t) = p(w, f),  

which gives r(f~) = p(f). It is now clear that R(fZ) = 1 if I2 is simply connected. 

Our final domain constant is the hyperbolic radius of convexity. For a • f~ set 

Then 

re(a, f~) = sup{r:  Dn(a, r ) i s  convex in the euclidean sense}. 

re(a)  = inf{ , (a ,  a ) :  a • 

is called the hyperbo l i c  rad ius  of  convex i ty  and Rc(~) = tanh rc(~) is the 

p seudo-hype rbo l l c  rad ius  of  convexi ty.  Clearly, rc(f~) < r(fl). Analogous 

to the situation for the hyperbolic radius of injectivity, one can show that if 

f : D --* f2 is a convering projection, 

pc(W, f)  = sup{p : f [ DD(w, p) is injective and f(DD(w, g)) is convex}, 

and 

Pc(Y) = inf{pc(W, f ) :  w E D}, 

then rc(f(w), ~) = pc(w, f )  which gives re(O) = Pc(f). Evidently, Re(~) = 1 

if f~ is convex since a convex univalent function maps every subdisk of D onto 

a convex set. Also, Rc(C \ ( -co ,  0]) = 2 - x/3 because 2 - V~ is the radius of 

convexity for a univalent function and the Koebe function is extremal. 

3. Inequalities for Domain Constants 

We now obtain upper and lower bounds for the domain constants c(~), Rc(~), 
fl(f~) and rl(~ ) in terms of the conformal invariant R(~). These bounds enable 

us to show that these four domain constants are quasi-invariant under conformal 

mappings. 

THEOREM 1: I f ~  is a hyperbolic region in C, then 

(2 - <_ ac( ) <_ 

These bounds are best possible. 

Proof: The upper bound is elementary and equality holds for a convex region. 

Now, we establish the lower bound. Fix a E fl and let f : D ~ f / b e  a covering 
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projection with f(0) = a. Then f is univalent in {z:  [z[ < R(~)) .  It follows that 

f ( { z :  Izl < (2 - v~)R(~)}  is a convex set [2, p. 44]. Therefore, 

(2 - v ~ ) n ( ~ )  < Ro(a, ~), 

so the lower bound holds. Since R c ( C \ ( - o o ,  0]) = 2 - v ~  and R ( C \ ( - c %  0]) = 1, 

this lower bound is best possible. | 

COROLLARY: If  ~ and/k are conformally equivalent hyperbolic regions, then 

ao(~) 
2 - V ~ <  Re(A) < 2 + V ~ .  

These bounds are best possible. 

Proof: Due to symmetry, it suffices to show that Rr(~) <_ (2 + ~f3)Rc(A). Now, 

since the radius of injectivity is a conformal invariant, 

1 
Rc(~) < R(~)  = R ( ~ )  _< 2-u--~Rc(ZX) = (2 + , /5)R~(~).  

Observe that equality holds if ~ = D and A = C \ ( -oo ,  0]. | 

THEOREM 2: /.t'Q is a hyperbolic region in C, then 

1 2 
R(a----~ -< ~(~) -< R(~---3" 

These bounds are best possible. 

Proof: We first establish the lower bound. Since the linearly invariant family 

has order a --= ~?(~), each function g e G is univalent in {w : [w[ < 1/a} [10]. 

This actually implies that each g E ~, and so every f E ~-, is univalent in the 

hyperbolic disk DD(w, ar tanh(1/a))  for any w E D. Therefore, R(~)  > 1 / a  and 

the lower bound is established. Equality holds if ~ -- D. The upper bound is 

also easy to demonstrate. Suppose f : D ~ F~ is a covering projection. There 

is nothing to prove if R = R(F~) = 0, so we may assume that R > 0. Then f is 

univalent in {w:  Iw I < R) ,  so the function h(w) = [f(Rw) - f(O)]/R]'(O) is a 

normalized univalent function in D. Therefore, Ih"(0)l/2 < 2, or 

If"(0)l 2 
21/'(0)-----~ -< ~" 

The same reasoning applies to each function ] o T E Jr, when T is any conformal 

automorphism of D. Consequently, ~(~) = a <_ 2/R. Note that equality holds 

for n = C \  (-oo,0].  | 



Vol. 77, 1992 

COROLLARY: 

QUASI-INVARIANT DOMAIN CONSTANTS 123 

If ~ and A are conformally equivalent hyperbolic regions, then 

1 ~(~) 
g <- T(-~ <- z 

These bounds are best possible. 

Proof." Because of symmetry we need only show that r/(~) < 2r/(A). Since the 

radius of injectivity is a conformal invariant, 

2 2 
~(~) < R - ~  - R(A) < 2~(A). 

Since r/(D) = 1 and r/(C \ ( -oo ,  01) = 2, this inequality is best possible. | 

THEOREM 3: /-f~ is a hyperbolic region in C, then 

3 
fl(~) < R(~)------ i .  

If fl(~) ~ 1, then 

These bounds are best possible. 

1 
R(~)---~ fl(~). 

Proof: We begin by establishing the upper bound. We may assume that R = 

R(~) > 0. Fix b • D. Define T(w) = ( R w + b ) / ( l + b R w ) .  T h e n T i s  a 

conformal mapping of D onto DD(b, p) where p = artanhR. Thus, g = f o T 

is univalent in D, so the graus-Nehari inequality gives (1 - [w[2)2[Sg(w)[ < 6. 

From S 9 = (Sf o T)(T') 2, we obtain 

6 > [Sg(0)[ = [Sf(T(b))[ [T'(b)[ 2 = [Sf(b)[(1 -[b]2)2R 2. 

This yields fl(f~) _< 3/R(f~) 2. Equality holds for 12 = C \ ( -co ,  0]. 

The lower bound is established in a similar manner. We assume that  1 < 

fl(l~) < ~ .  Set R = 1 / ~ .  Fix b E D and define T as in the first portion of 

the proof. We will show that g = f o T is univalent in D. This implies that  f is 

univalent in the disk DD(b, artanhR) so p(b, f )  > artanhR and 

R(a) = tanh p(/) > z /v /~a) ,  
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which  is the  des i red  result .  Equality holds  for ~ = {z : [ Ira z I < ~r/2}. Now, 

2 

(1 -Iw[:)=iSg(w)[ = (Z -]T(w)I:)2[SI(T(w))I\  (Z - IT(w)l : )  fl 
2 

< 2/3(~)\ (Z-IT(w)l=) ] 

Direct calculation gives 

so that 

(z -]wi~)]T'(w)l = (z - ]wl2)R 
(1 - I T ( w ) l  ~) Z - a~lwl  ~ 

< R, 

(1 -Iwl2)21S#(w)l <_ 2/3(f~)R 2 = 2. 

Nehari's univalence criterion [8] implies that g is univalent in D. | 

COROLLARY: If ~ and A are conformally equivalent hyperbolic regions and 

fl(fl), fl(A) are both at least 1, then 

5-  

In particular, the above inequality holds whenever fl and A are non-simply con- 

nected hyperbollc regions. These bounds are best possible. 

Proof'. We need only show that fl(fl) _~ 3fl(A). Because the radius of injectivity 

is conformally invariant, 

3 3 
~(a) < - -  - _< 39(a).  a(a)~ a(A)~ 

Equality holds if a = C \ (-c~, 0] and A = {z: Jim z] < lr/2}. 

The following theorem is due to Hilditch [4]. The authors rediscovered this 

result and found several different proofs. We present Hilditch's proof since it is 

the most elementary. | 

THEOREM 4: f f  ~ is a hyperbolic region in C, then c(~) ~ 1/2 with equality if  

and only if ~ is convex. 

Proo~ Recall that ~ is convex if and only if c(fl) > 1/2 ([4], [6]). Therefore, it 

suffices to show that c(12) < 1/2 for any hyperbolic region ~. Fix a e ~. Select 
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c E 0~  with In-c[  = d = 6a(a). Then the disk A = {z:  [z -a[  < d} is contained 

in ~, so the monotonicity property of the hyperbolic metric gives 

d 
/~fl(z) < )~A(Z) - -  d2 _ iz _ a] 2 

for z e A. If z belongs to the half-open segment [a, c), then 6a(z) = d - Iz - a I. 

Hence, for z • [a, c) 

d 
c(fl) _< X,(z)g•(z) = d +  [z - a[" 

If we let z ~ c along the segment [a, c), then we obtain c(fl) _< 1/2. | 

THEOREM 5: I f  f l  is a hyperbolic region in C, then 

R(Ft) { 1 2 ar tanh R(gt)} 
2~/3 + R(gt) 2 -< c(ft) _< min ~, ~ 

Proof: We begin by establishing the lower bound. From Theorem 3 we have 

3 

~(a) < R( a )-----Z" 

Since r/(a) 2 - 1 _< fl(a) [10], we obtain 

~(~) < ~/3 + R(~)~ 
- R ( a )  

Because 1/2r/(O ) _< c(~) [9], we get the lower bound. Equality holds for a slit 

p l a n e .  

The proof of the upper bound is similar. First, ([1], [7], [12]) if fl(~2) > 1, then 

tanh < R(12). 
2 ~ / ~ ( ~ )  - 1 

Harmelin [3] proved that  fl(a) < 1 + ~(~)2, so that  
7r 

t anh2-  ~ < R(f~). 

Since c (~ )  < 1 / ~ ( ~ )  [9], we get 

t . ~ c ( ~ )  ann-- 7 -  < R(~). 

This establishes the upper bound when fl(~) > 1. If fl(~) _< 1, then ~ is simply 

connected [8]. In this case the upper bound is trivial since R(fl) = 1 implies 

(2 / r )ar tanhR(f l )  = oo > 1/2 >_ c(fl). 
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COROLLARY: If  ~ and A are conformally equivalent hyperbolic regions, then 

1 -< c - ~  -< 1 +3coth  2 = 2.824..-.  
~ 1  + 3coth2(~) 

Proof'. Since the function h(t) = t/2x/3 + t 2 is increasing on [0, 1], we obtain 

R(n) R(~) 
c(n) >__ 

2~/3 + R(n)~ 2v/3 + R(A)~ 

> tanh(,~,(a) 2 , c(A) 

Because k(t) = 2tx/1 + 3coth~(~rt/2) is an increasing function of t and, by The- 

orem 4, t = c(f/) e [0,1/2], we obtain c(f~) >_ c(A)/k(1/2).  This establishes the 

lower bound; the upper bound follows by symmetry. | 

Remark: Notice that the upper bound for c(~)/c(A) obtained in the preced- 

ing theorem corresponds to the value t = c(~) = 1/2. But by Theorem 4, 

if c(~) = 1/2, then fl is convex and so ~ and A are both simply connected. 

Then c(~)/c(A) < 2. This supports our conjecture that the upper bound for 

c(~)/c(A) should be 2 for all pairs of conformaUy equivalent uniformly perfect 

domains. Note that in the Corollaries to Theorems 1, 2 and 3 the extremal upper 

bound on the quotient of the various domain constants was attained for a pair 

of simply connected regions. This is further evidence for our conjecture. 

THEOREM 6: Let ~ be a hyperbolic region in C. Then f~ is uniformly perfect if 

and only if one of the [ollowing equivalent conditions holds: 

O) ~(n) < oo; 

Oi) ~(n) < oo; 
(iii) ~(n) > o; 
Or) ~o(n) > o. 

Proof." This is an immediate consequence of Theorems 1, 2, 3 and 5. | 
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